
8 The Delphi Magazine Issue 44

Beating the System:
Putting The Squeeze On
by Dave Jewell

In last month’s column I spent
some time looking at the various

ways in which it’s possible to
obfuscate the IDE-detection code
in your shareware components,
thus making it much more difficult
for a would-be hacker to convert
the trial version of a control into
something that’s usable without
restriction. This time round, I’m
going to continue the same theme,
but here the emphasis will be on
how to protect your finished appli-
cations, rather than protecting
individual components.

Letting It All
Hang Out, Revisited
You might well ask why it’s neces-
sary to protect a deployed EXE file?
After all, once a component has
been linked into an executable, it’s
no longer easily extractable from
the surrounding program code.
That’s certainly true, but we’re not
simply talking about components
here, we’re really talking about the

wider issues of intellectual prop-
erty and trade secrets. As I men-
tioned last month, I’ve recently
seen a Delphi component which
goes to great lengths to hide the
way in which it implements direct
disk access, presumably to pre-
vent other shareware authors from
bringing out competing products!

Again, let’s suppose that you’ve
developed a new Pascal compiler
that provides an extraordinary
degree of optimisation in the gen-
erated code. Or maybe you’ve
come up with some clever new
algorithms for compression, fast
manipulation of graphic images, or
whatever. Or perhaps you simply
prefer to distribute your share-
ware application with certain
restrictions built-in, and you don’t
want prospective hackers to easily
be able to remove those limita-
tions. All of these are good reasons
for protecting the innards of an
executable against casual viewing,
and that’s true whether it be an

EXE file, package, ActiveX control,
or whatever.

In case you’re thinking that it
really doesn’t matter if one or two
dedicated individuals succeed in
patching the trial version of your
application, then think again.
Hackers tend to like showing off
what they’ve done to like-minded
individuals, and the various
‘cracker’ websites are full of
patches and passwords which can
be used to remove protection from
hundreds of shareware programs.
These sites are known not just to
hackers, but also to many others
on the lookout for a free lunch.
Once your program is listed on
these sites, human nature dictates
that many people who would oth-
erwise have registered your soft-
ware won’t bother to do so. Over
the years, I’ve talked to dozens of
shareware authors about their
experiences, and the overwhelm-
ing consensus is that making a pro-
gram difficult to crack can
significantly improve your share-
ware revenues. Such is human
nature.

Right then; having hopefully
convinced you that protecting
your software is potentially a good
idea, let me illustrate just how easy
it is to peek around inside a Delphi
application (much the same
techniques can be applied to
C++Builder programs as well).
Please understand that I’m show-
ing you these techniques specifi-
cally so that you’ll realise how
vulnerable an unprotected execut-
able can be, and for no other
reason.

Merlin:
Gone But Not Forgotten...
Back in 1997, two well-known
Delphi programmers, Mike Scott
and John Howe, got together and
developed Merlin: an innovative
set of COM-based Delphi add-ins.

➤ Figure 1: Merlin's Resource Viewer makes it easy to examine
the embedded form resources contained within a compiled
executable. Here, we're looking at the main application form
within the Delphi 4 IDE itself.

10 The Delphi Magazine Issue 44

Sadly, since that time, there does
not seem to have been any further
development work put into Merlin,
one of the reasons being competi-
tion from GExperts and CodeRush.
Be that as it may, you can still
download a shareware version
from the official Merlin website at
www.boots.com/merlin/.

Although Merlin is getting some-
what long in the tooth now, I still
use it a lot, mainly because it’s pos-
sible to configure Merlin such that
the various goodies like its
Resource Viewer and Executable
Viewer are available on Windows
Explorer’s context menu. With
Merlin installed, I can just right
click an EXE file in the shell, and
select Resource Viewer from the
resulting context menu. You can
see a copy of the Resource Viewer
running in Figure 1. In this particu-
lar case, the Resource Viewer is
peeking inside the DELPHI32.EXE
program that ships with Delphi 4,
the main IDE program. You can see
that it contains three TForm
resources, the first of which,
TAppBuilder, corresponds to the
main IDE window which we all
know and love. This particular
form resource is being displayed in
human readable form in the
right-hand pane.

What can we do with this? Well,
for starters, you could use the Save
Resource... option on Merlin’s
File menu. Using this facility, the
currently selected resource can be
saved as a .RES file to disk. In the
case of a Delphi form file, Merlin
could save the illustrated
TAppBuilder resource as a .DFM file.
Bear in mind that, at the Windows
API level, a .DFM file is simply a
.RES file containing a single named
RT_RCDATA resource where the
resource name corresponds
directly with the type of the form;
TAppBuilder in this case.

But there are more tricks up
Merlin’s copious sleeve. Try this:
select all the text in the right-hand
pane of the Resource Viewer and
then copy it to the Windows clip-
board. Next, fire up a copy of
Delphi 4 and start a new, empty
project. Rename the form so that it
has the same name as what you can
see in Merlin. In the case of Figure

1, you'd want to change the name
of the form to AppBuilder). This
will cause Delphi to automatically
change the form type to
TAppBuilder. Next, right click on
the form window and choose View
as Text from the context menu. Are
you getting the idea? Now delete
everything in the resulting code
editor view and do a paste to copy
the incoming DFM resource data
from the clipboard. Finally, choose
View as Form from the code editor’s
context menu to return to a
conventional form-based view.

Hey presto, with a wave of his
magic wand, Merlin has allowed us
to grab an embedded form
resource from the IDE’s own exe-
cutable and copy it into the devel-
opment environment where we
can see what makes it tick. If you
now try double clicking on any of
the various TMainMenu and TPopup
Menu components on the form,
you’ll find that it’s possible to view
their menu data structures in the
usual way. Moreover, you can open
the TImageList control and browse
through the list of glyphs used by
the IDE (see Figure 2).

Some months back, I found occa-
sion to use this very technique
during a somewhat... umm... spir-
ited debate with a Borland (sorry,
Inprise) representative who was
endeavouring to persuade the den-
izens of the CIX Borland confer-
ence that fixing the dreaded Delphi
4 STB imagelist corrupted icon
problem was not the company’s
responsibility. The false claim was
made that putting over 254
bitmaps into an imagelist was the
root cause of the problem and we

were confidently told that the
Delphi 4 IDE went over this limit.
By peeking at the various forms in
Delphi 4 using the technique
described above, I was able to defi-
nitely establish that this wasn’t the
case. In fact, you can clearly see
from Figure 2 that there are only 77
bitmaps stored in ImageList1.
Needless to say, at the time of writ-
ing, Borland have just released
Update 3 for Delphi 4, which it’s
claimed now fixes the problem...

Incidentally, if you have Merlin,
and you followed the steps I gave
earlier, you’ll have noticed that the
IDE complained about certain
component types not being found.
Just press the Ignore All button
when this dialog appears. The
reason it happens is because the
IDE uses a number of proprietary
components (for example TDock
Panel and TDockToolBar) which
aren’t available to us ordinary
mortals. At least, not officially...J.
For similar reasons, you won’t be
able to save the ‘kidnapped’ form
without lots of complaints from
the IDE. That’s because all we’ve
done is retrieve the resource data,
but the corresponding component
declarations are missing from the
TAppBuilder form declaration, and
the various event handlers refer-
enced in the resource data are also
absent.

Is there a way around this? Well,
there is if you have a clever little
utility called EXE2DPR. If you don’t
have it, you can download a
restricted shareware version from
the author’s website at www.
cdc.net/~dmitri/. As the name sug-
gests, EXE2DPR takes an existing

➤ Figure 2: With a little bit
of Merlin Magic, (and
the Windows clipboard),
it's possible to transfer
an embedded form
resource back into the
Delphi IDE for viewing
in the usual way. Again,
this is the form that
corresponds to the
Delphi IDE's main form,
viewed from inside the
IDE…, if you see what I
mean.

14 The Delphi Magazine Issue 44

EXE file (it only works for program
files, not for packages) and recon-
structs the DPR file. But that’s not
all, it also scans the EXE file for
form resources and generates all
the missing DFM files. Finally, it
also creates a skeletal version of
the .PAS file for each form, includ-
ing all the overridden event han-
dlers that have been referenced
from the .DFM resource data: see
Figure 3. It’s a very cute little
utility.

Incidentally, this is probably a
good place to emphasise that there
are always legitimate reasons for
reverse engineering an executable
or using tools such as EXE2DPR. If
you’re in the embarrassing posi-
tion of having accidentally fed your
source code to the dog (or what-
ever) then such tools can save you
a great deal of time in reconstruct-
ing, if not all the code, then at least
the essential framework of your
application.

Fun With UpdateResource
By now, you should hopefully be
starting to feel somewhat nervous
about the possibility of releasing
unprotected Delphi-authored trial
software into the field. If so then
great, that’s exactly my objective.

➤ Figure 3: Utilities such as EXE2DPR allow you to take things even
further. This is part of the source code for the APPMAIN.PAS unit,
extracted from the Delphi 4 IDE. Obviously, this utility can't recover
the source of individual methods, but it does an excellent job of
recovering the form declaration.

Of course I’m not saying that
Delphi applications are easier to
reverse engineer than Java code.
Most folks know that thanks to
utilities such as SourceAgain, it’s
often possible to recover virtually
all the Java source code from a Java
applet with the greatest of ease (as
I’ve been writing about in my Java
Column in Developers Review,
www.itecuk.com). There’s no
simple way of doing that with a
Delphi application, but on the
other hand, it’s much easier to
reverse engineer a Delphi program
than one written in C or C++.

If you come from a traditional
Windows SDK programming back-
ground, you might be forgiven for
thinking that a Delphi program is
relatively secure. After all, there
are no conventional menu res-
ources, dialog template resources
or bitmap resources. The Delphi
equivalent of all those things is
safely hidden away inside the
resource date of your form file,
where a conventional resource
editor (such as Borland’s Resource
Workshop of fond memory) can’t
touch it. But as I’ve tried to show
you above, this doesn’t mean that
it’s completely inaccessible.

Suppose you’ve got a trial pro-
gram which has no functionality
restrictions, but simply displays a
background bitmap with the
words ‘Unregistered Version’ dis-
played prominently in red.
Typically, you would store that
bitmap as part of the form data of a
TImage component, or possibly in
an imagelist. Either way, once
you’ve extracted the DFM data into
a form that can be manipulated by
the Delphi IDE, the bitmap can
easily be changed. This raises the
interesting question of how does
one then put the modified form
resource back into the original
executable? Again, this is quite
easy thanks to a routine called
UpdateResource that’s only avail-
able under Windows NT. Using
UpdateResource, it’s possible to
permanently edit the resources
contained within a compiled,
linked executable. Thus, using
techniques similar to those
described here, it would actually
be quite straightforward to write a
Delphi application which ‘reaches
into’ the heart of another execut-
able, streams an existing form
resource into memory, makes
changes to (for example) TImage
and TImageList items in the usual
way, and then streams the result
back out again, writing it to the EXE
file with UpdateResource.

And Even More Fun
With ObjectBinaryToText...
Maybe you’re wondering how a
utility such as Merlin’s Resource
Viewer works its magic? There’s
actually very little work involved.
Just to prove the point, take a look
at the code for my own little Form
Peeker shown in Listing 1: you can
see the program running in Figure
4 and (as ever) full source is
included on this month’s disk. The
operation of this program is very
straightforward: when the user
clicks on the Open File button, a
filename is obtained from the
common dialog Open File box in
the usual way, and the
GetResourceInfo routine is then
called. Within GetResourceInfo, I
use the LoadLibraryEx routine to
load the designated executable
into memory. Somewhat coun-

April 1999 The Delphi Magazine 15

ter-intuitively, the LoadLibraryEx
routine will happily load EXE files
as well as DLLs, meaning that you
can use it to examine both
applications and packages.

If the executable loads success-
fully, then the left-hand listbox and
the right-hand rich-edit control are
both cleared and the API-level
EnumResourceNames routine is called
to enumerate all the resources con-
tained within the designated
module. More specifically, it enu-
merates all resources of type
RT_RCDATA, because of course we’re
looking specifically for form
resources. This causes Windows
to repeatedly call our enumeration
callback routine, EnumResProc,
passing the name of each resource
found in the ResName argument.

I know I’ve said this before, but
let me emphasise once again that
when working with an API-level
enumeration routine, you must be
sure to use the stdcall specifier
when defining the call-back
routine. If, on the other hand, you

unit UMain;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, Menus, StdCtrls, ComCtrls;

type
TPeekForm = class(TForm)
FormList: TListBox;
OpenDialog: TOpenDialog;
Label1: TLabel;
OpenButton: TButton;
Label2: TLabel;
FormData: TRichEdit;
procedure FormDestroy(Sender: TObject);
procedure OpenButtonClick(Sender: TObject);
procedure FormListClick(Sender: TObject);

private
hMod: THandle;
procedure Clear;
procedure GetResourceInfo;

public
end;

var
PeekForm: TPeekForm;

implementation
{$R *.DFM}
function EnumResProc (hMod: THandle; ResType, ResName:
PChar; Self: TPeekForm): Boolean; stdcall;

var
h: THandle;
p: pDWord;

begin
// OK - we've got a rc_Data resource, but is it a DFM?
h := LoadResource(hMod, FindResource(hMod, ResName,
ResType));

p := LockResource (h);
if p^ = $30465054 then
Self.FormList.Items.Add (ResName);

Result := True;
end;
procedure TPeekForm.Clear;
begin
if hMod > 0 then
FreeLibrary (hMod);

FormData.Lines.Clear;
FormList.Clear;

end;
procedure TPeekForm.GetResourceInfo;

var
hTemp: THandle;

begin
hTemp := LoadLibraryEx (PChar (OpenDialog.FileName), 0,
Load_Library_As_DataFile);

if hTemp <> 0 then begin
Clear; hMod := hTemp;
Caption := Format('Form Peeker - [%s]',
[OpenDialog.FileName]);

EnumResourceNames(hMod, rt_rcData, @EnumResProc,
Integer(Self));

if FormList.Items.Count > 0 then begin
FormList.ItemIndex := 0;
FormListClick (Self);

end;
end;

end;
procedure TPeekForm.FormDestroy (Sender: TObject);
begin
Clear;

end;
procedure TPeekForm.OpenButtonClick(Sender: TObject);
begin
if OpenDialog.Execute then GetResourceInfo;

end;
procedure TPeekForm.FormListClick(Sender: TObject);
var
sText: TMemoryStream;
sRes: TResourceStream;

begin
with FormList do if ItemIndex <> -1 then begin
sRes := TResourceStream.Create(hMod, Items [ItemIndex],
rt_rcData);

try
sText := TMemoryStream.Create;
try
ObjectBinaryToText (sRes, sText);
sText.Position := 0;
FormData.Lines.LoadFromStream (sText);

finally
sText.Free;

end;
finally
sRes.Free;

end;
end;

end;
end.

➤ Listing 1

➤ Figure 4: Here's my little form peeker program, the source code for
which is given in Listing 1. As you can see, there's really very little to
it. This utility can be used to examine the innards of all 32-bit Delphi
and C++ Builder executables, as well as .DPL and .BPL packages.

use a VCL enumeration routine
(such as EnumModules, defined in
the SYSTEM unit) then you should
not use the stdcall specifier. If you
get it wrong, you’ll soon know
about it!

For each encountered resource,
the EnumResProc routine loads it

into memory and examines the
first four bytes of the resource to
determine whether or not this is
actually a form. In Delphi, every
form is a RT_RCDATA resource, but
every RT_RCDATA resource ain’t nec-
essarily a form! To see what I mean,
use Merlin’s Resource Viewer to

16 The Delphi Magazine Issue 44

take a peek at CORIDE40.BPL, the
package which implements the
core IDE code. In there, you’ll find a
heck of a lot of forms, but you’ll
also see a number of other
RT_RCDATA resources which don’t
correspond to forms, such as the
various key-mapping resources. If
EnumResProc is happy that it’s deal-
ing with a resource, then the name
of the resource is added to the
FormList listbox.

And that’s about it, apart from
the FormListClick routine where
the interesting stuff happens.
Inside there, the clicked-on
resource data is copied into a
stream using the seriously useful
TResourceStream class. Once that’s
done, the even more useful
ObectBinaryToText routine is called
to convert the binary stream data
into a human readable representa-
tion of the form. This is written to a
memory stream object, and subse-
quently copied into the Lines prop-
erty of the rich-text edit control
using the familiar LoadFromStream
method.

In case you’re wondering why I
bothered with a rich-text control,
suffice it to say that some of those
form resources are big, especially
when they contain a large number
of embedded bitmaps. In Figure 4,
you can see my little Form Peeker
program examining the TEnviron-
mentOptions form that’s used to
implement the tabbed environ-
ment options dialog in the Delphi
and C++Builder IDEs. If you were to
replace the rich-text control with,
say, a TMemo control, then you’d end
up exceeding the capacity of the
control when selecting this partic-
ular form resource.

This program could clearly be
taken much further. You could
parse the human-readable text
data and build up a list of used
components and event handlers.
You could even do what EXE2DPR
does and recreate a compilable
declaration for the form itself!

Here Come The
(Compressed) Cavalry!
At this point, your nervousness
should have matured into a deep
despondency. If it’s really this easy
to ‘massage’ Delphi software, then

maybe I should switch to C++,
right? Wrong! Nothing could be that
bad! The fact is, it’s very easy to
protect your EXE files, DLLs and
packages against the sort of
invasion of privacy that I’ve been
discussing up until now. You can
do it by making use of one of the
various executable compressor
utilities that are on the market at
the present time.

If you’re not familiar with EXE
compressors, then here’s how
they work. A compressor applies
some data compression algorithm
to the code contained within your
executable file, and (optionally) to
the resource data, and
import/export tables contained
within the file. You’re probably
aware of the fact that machine
code cannot be compressed to the
same extent as plain text, but nev-
ertheless most compressors are
able to reduce the size of a file by
something like half.

Using a compressor has several
benefits. Firstly, it means that the
EXE file will typically load more
rapidly since disk I/O is, in terms of
speed, a much more expensive
operation than in-memory decom-
pression. Secondly, the end-user of
your program will benefit from
reduced disk space requirements
and thirdly (most important of all
from the viewpoint of this discus-
sion) is the anti-hacking angle. It
ought to be obvious that when
you’re dealing with a compressed
executable it becomes difficult, if
not impossible, to patch the pro-
gram code. Not only can the hacker
not ‘see’ the original code, but any
patch that’s applied must fit right
into the compressed bit stream.

Since the decompression code in a
compressed executable will
almost certainly perform some
sort of checksum validation on the
decompressed data, you can see
that the chances of successfully
applying a patch ‘in situ’ are
exceedingly slim.

I mentioned earlier that my Form
Peeker utility was included on this
month’s cover disk. What I didn’t
mention was that I’ve compressed
it. The initial program was only
13Kb long because I chose to build
the program using packages. (This
is a Delphi 3 application, by the
way, so if you don’t have the Delphi
3 runtime packages installed,
you’ll have to rebuild the EXE
under your own preferred version
of Delphi before running it.) Using
a shareware compressor called
ASPack, I then shaved a further
3Kb away, resulting in an EXE file
that’s a mere 9728 bytes long! But
here’s the cunning part: if you try
to use PEEKER.EXE to look inside its
own executable, you won’t find
any form resources at all. Those
resources are still there, but
they’re compressed, and therefore
the first four bytes are not recog-
nised as a valid signature by the
code inside EnumResProc.

When using various program-
mers’ utilities to peek inside a com-
pressed file, the results will differ
according to how the utility was
written and what specific com-
pressor was used to crunch the
file. Merlin will happily display the
form resources within PEEKER.EXE,
but it won’t recognise them as
forms because it can’t find the
magic four-byte signature, all
you’ll see is a hex dump of the com-

➤ Figure 5: Some EXE
compression
tool authors have
thought seriously
about anti-hacking
issues. The creator
of ASPack advocates
the use of multiple
levels of compression
and also changing
the section name
used by the
decompression code.

April 1999 The Delphi Magazine 17

pressed data. If you compress your
executable using a different com-
pressor, Merlin will typically crash
altogether, and we’re more than
happy that it should do so, since
we’re trying to prevent any form of
peeking from going on!

For your information, Table 1
gives a quick round-up of
compressors I have known and
loved.

A couple of other compressors
that spring to mind are NeoLite
(www.neoworx.com/neolite/) and
WWPack32 (www.webmedia.pl/
wwpack32/index.html) although I
have no experience with these two
particular products.

If security is your primary con-
sideration when compressing your
program executables, then I’d have
to recommend that you do not use
Shrinker or PkLite. I hasten to add
that there’s nothing wrong with
these products, but utilities are
available on a number of hacker
sites which can decompress an
executable that’s been crunched
by one of these products. In princi-
ple, there’s nothing to prevent
decompressors being written for
any of these tools, but most of the
compressor authors are aware of
the problem and seeking to pres-
ent a difficult (and possibly
moving!) target to anyone who fan-
cies having a go at cracking the

decompression scheme that’s
used.

Conclusions
In this month’s column, I’ve tried to
demonstrate how easy it is to peek
inside (and ultimately, modify)
Delphi-authored applications,
firstly by making use of a couple of
commercially available tools, and
then by creating a utility of my
own. Finally, I’ve demonstrated
how to largely avoid this problem
by making use of one of the com-
pressors that are currently
available. If you’re a shareware
author who releases trial/limited
functionality software, I hope I’ve
convinced you that investing in a
compressor is a worthwhile thing
to do.

No discussion on compression
technology (and anti-hacking tech-
niques in general) would be worth-
while without giving you a few
other assorted tips.

Firstly, don’t use packages
unless you really have to. A pro-
gram that’s linked with Delphi’s
runtime packages must necessar-
ily expose a lot of runtime type
information in order for the
dynamic-link magic to work. At the
same time, a custom package must
expose even more information
since, by default, every non-private
method of every object will be
exported. If you’ve ever wondered
how the Delphi IDE works, then

Shrinker www.blinkinc.com

A relatively expensive, but well-respected commercial compressor.
This is the only one which works with 16- and 32-bit executables.
Unfortunately, a ‘de-shrinker’ utility has recently appeared on
various hacker websites.

Petite www.icl.ndirect.co.uk/petite/
An excellent British product, enthusiastically supported by its
creator, Ian Luck. Ian is aware that some decompressors have been
compromised and is keen to make life as difficult as possible for
the would-be hacker.

ASPack www.alenka.spb.ru/aspack/
Another very nice Russian compressor (written in Delphi) that has
some innovative features such as the ability to change the section
name containing the decompression code, and to try out the
compressed executable before committing.

PkLite www.pkware.com/download.html
For 16-bit executables only. Somewhat dated. A number of
hackers’ utilities are available for decompressing executables
created with PkLite.

➤ Table 1

look no further than Delphi version
4.0 which exposes pretty well
everything that’s going. Enough
said...

Another tip is to remove the
PACKAGEINFO resource before com-
pressing your executable. This
resource gives the prospective
hacker a big hint when trying to
decompile your program, because
it indicates the name of every unit
that’s been linked into the EXE,
this information is used by (for
example) Merlin’s Executable
Viewer, cousin to the Resource
Viewer that I’ve discussed earlier.
Be aware that a few applications
object violently to having their
PACKAGEINFO resource removed, so
you will have to suck it and see.
Also, you should never remove
resources from an executable after
it has been decompressed
because this will typically upset
the decompressor, which thinks
it’s being short-changed. Instead,
remove any unwanted resources
before compressing the execut-
able.

Finally, bear in mind that it’s
possible to compress the same
executable more than once. The
authors of ASPack specifically
advocate this as an anti-hacking
technique. Some compressors
won’t allow you to compress an
application multiple times
because they specifically check for
the presence of their own decom-
pression signature. However, you
can always achieve the same effect
by compressing the same execut-
able twice using different com-
pressors. You will probably
appreciate that compressing a file
that’s already been compressed
once will often result in a slight
increase in file size, but that’s
immaterial, what we’re trying to do
is make life more difficult for the
would-be hacker.

Dave Jewell is a freelance consul-
tant, programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is Technical Editor of Developers
Review, also published by iTec.
You can reach Dave by email at
Dave@HexManiac.com

	Letting It All Hang Out, Revisited
	Merlin: Gone But Not Forgotten...
	Fun With UpdateResource
	And Even More Fun With ObjectBinaryToText...
	Here Come The (Compressed) Cavalry!
	Conclusions

